P01-001

固有値の可視化による非線形電気回路解析

松尾 佳祐 , 齋藤 兆古(法政大学大学院), 堀井 清之(白百合女子大学)

Nonlinear Electric Circuit Analysis by Visualization of Characteristic Values Keisuke MATSUO, Yoshifuru SAITO and Kiyoshi HORII

ABSTRACT

This paper studies nonlinear phenomena caused by ferromagnetic materials. To represent nonlinear properties of ferromagnetic materials in parallel ferroresonant circuit, we apply Chua-type magnetization model to an inductance exhibiting saturation and hysteretic nonlinear properties of ferromagnetic materials, deriving a state variable equation and solutions by the backward Euler method with automatic modification. The characteristic values of the state transition matrix are calculated in each calculation step by Euler method. As a result, it is clarified that the trajectories of characteristic values in state transition matrix reveal a difference between the normal and ferro-resonance phenomena in the ferroresonance circuit.

Keywords: Nonlinear, Ferromagnetic materials, Ferroresonance, Characteristic Values

1.緒 論

磁性材料の特性を積極的に利用し多彩な機能を有する 電気機器が数多く開発され、実用化されている.しかし, 時として磁性材料を用いる電気機器においては、磁性材 料の持つ磁気飽和,ヒステリシス,渦電流等が予測困難 で複雑なシステム応答を示す場合がある.これらの問題 点を解決する磁性材料を含む電磁界解析の高信頼化は, 高度化する電気機器の設計に必要不可欠である.

磁気ヒステリシスを表現するためにさまざまな磁化特 性モデルが提案されているが,その大半は過去の磁気履 歴や物理的要因,例えば,残留磁気,残留応力等によっ て影響を受けるパラメータを用いている.このため,履 歴特性を表現するパラメータそのものが履歴を含むこと に起因して,再現される履歴現象は限定されることとな る.磁性材料を含む電磁界解析のキーは,材料の特性を 表現する磁化特性モデル,すなわち構成方程式を導出し, Maxwellの方程式を解くことに帰する.

本論文は,従来から早野・齋藤らが提案するChua型磁 化特性モデル¹⁾を用いて,並列鉄共振回路における非線 形現象を固有値軌跡の可視化によって鉄共振現象特有の 状態を明らかにする.その具体的な方法は,Chua型磁化 特性モデルの構成方程式より導出される回路方程式を状 態変数法で表現し,逐次修正型後方オイラー法²⁾を用い て過渡解析を行う.同時に状態遷移行列の固有値を時間 刻み幅ごとに計算し、固有値の時間推移軌跡を考察する. その結果,固有値軌跡を可視化することによって,鉄共 振時と非鉄共振時の固有値軌跡に根本的な相違があるこ とが判明した.

2.磁性材料を含む電気回路

2.1 Chua 型磁化特性モデル

鉄共振回路の過渡解析を行うために,式(1)で与えられる Chua 型磁化特性モデルの構成方程式を用いる.

$$H = \frac{1}{\mu}B + \frac{1}{s}\left(\frac{dB}{dt} - \mu_r \frac{dH}{dt}\right) \tag{1}$$

式(1)の右辺第1項は静的な磁区状態を表し,第2項は 動的な磁区状態を表す.ここで,H,Bはそれぞれの磁 界の強さH[A/m]と磁束密度B[T]を表し, μ , μ r,sldChua 型磁化特性モデルのパラメータであり,それぞれ透磁率 [H/m],可逆透磁率[H/m],ヒステリシス係数[Ω /m]であ る.この3パラメータは,過去の履歴や駆動周波数に依 存しない方法で導出,測定されることが磁化特性モデル 構成に関する最大のキーポイントである³⁾⁾.

透磁率 µ は各点において交流消磁をして得られる理想 磁化曲線から決定する.飽和値に達する周期的磁化状態 のヒステリシスループにおいて,同一磁束密度における 上昇曲線と下降曲線それぞれの磁界の平均値をトレース すると近似理想磁化曲線が得られることが知られている. この理想磁化曲線は過去の履歴を交流消磁して得られる から過去の履歴に無関係である.

可逆透磁率µл-もまた,過去の履歴に依存しないパラメ ータでなければならない.よって,過去の履歴に無関係 である理想磁化曲線測定時におけるマイナーループ,す なわち理想磁化曲線測定時に得られる増分透磁率を用い る.この増分透磁率を測定する場合,渦電流や表皮効果 の影響を削減するため,極めて低周波の励磁電圧を用い

Fig.1 Magnetization Curve Giving Permeability $\ \mu$

Fig.3 Hysteresis Parameter s (TDK H5A)

て測定する必要がある.

ヒステリシス係数*s*は,磁束密度*B*=0 時のサーチコイ ル誘起電圧より*dB/dt*と電流波形より*dH/dt*を求めるこ とで決定できる.磁束密度*B*=0時の磁界*H*は,保磁力*H*_c に対応するから式(1)よりヒステリシス係数*s*は,

$$s = \frac{1}{H_c} \left(\frac{dB}{dt} - \mu_r \frac{dH}{dt}\right) \tag{2}$$

となる .結果として ,励磁電圧を変化させ ,磁束密度 *B*=0 時の*dB/dtと dH/dt*より , ヒステリシス係数*s*が求まる . また , 可逆透磁率 *µ*-t *B*=0 のとき最大となるため , ヒス テリシス係数を求める式(2)で使用する値は最大可逆透 磁率である .

磁化特性モデルは,磁気履歴を表現しようとするもの であり,モデルを構成するパラメータ自身が過去の履歴 に依存するようなものであってはならない.Figs.1-3 は 実験で測定されたフェライトコア(TDK H5A)のChua型 モデルのパラメータμ, μr, sを与える曲線である⁴⁾.本 論文ではこれらのパラメータを解析に用いる. 2.2 並列鉄共振回路の定式化

2.2 亚列跃共振回路の正式化

並列鉄共振回路は, Fig.4 に示すようにヒステリシス を呈する磁性材料を含む R-L-C 回路である.入力電流を 周波数一定で振幅を徐々に変化させていくと、共振が始 まり、リアクトルの端子電圧が一定値になる.その後共 振状態から振幅を徐々に変化させても共振は直ちに終了 せず、リアクトルの端子電圧は一定値をとる.この鉄共 振現象を Chua 型磁化特性モデルを用いて過渡解析を行 う.

A : cross-section area (m ²)
<i>l</i> : flux path length (m)
N: number of coil turns
R : internal resistance (Ω)
C: capacitance(F)
: magnetic flux(Wb)
i_1 : current (A)
r_2 : current (A)

Fig.4 Parallel Ferroresonance Circuit

式(1)の構成方程式をトロイダルコアの磁路 / に沿って線積分することで,電流 i と磁束の関係式(2)を得る.

$$Ni + \frac{\mu_r}{s}N\frac{di}{dt} = \frac{l}{\mu A}\phi + \frac{l}{sA}\frac{d\phi}{dt}$$
(3)

Fig.4 に示す回路より, Lに流れる電流*i*₁ は式(4)で与えられる.

$$i_l = \left(V_c - N\frac{d\phi}{dt}\right)/R \tag{4}$$

式(4)を電流*i*₁と磁束 の関係式である式(2)に代入し, 解くべき連立微分方程式(5),(6)を得る.

$$\frac{\mu_r}{s} \frac{N}{R} \frac{d^2 \phi}{dt^2} = \left(-\frac{N}{R} + \frac{\mu_r}{s} \frac{N}{R^2 C} - \frac{l}{sAN}\right) \frac{d\phi}{dt} - \frac{l}{\mu AN} \phi \qquad (6)$$
$$+ \left(\frac{N}{R} - \frac{\mu_r}{s} \frac{N}{R^2 C^2}\right) q + \frac{\mu_r}{s} \frac{N}{Rc} i$$

$$\frac{dq}{dt} = i + \frac{N}{R} \frac{d\phi}{dt} - \frac{q}{RC}$$
(7)

式(6),(7)から式(8)あるいは式(9)の状態変数方程式が 導かれる.

$$\frac{d}{dt} \begin{pmatrix} \phi \\ \frac{d\phi}{dt} \\ q \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ a_{21} & a_{22} & a_{23} \\ 0 & a_{32} & a_{33} \end{pmatrix} \begin{pmatrix} \phi \\ \frac{d\phi}{dt} \\ q \end{pmatrix} + \begin{pmatrix} 0 \\ u_1 \\ u_2 \end{pmatrix}$$
(8)

 $\frac{a}{dt}x = ax + b \tag{9}$

式(9)の非線形状態変数方程式を逐次修正型後方オイ

P01-001

ラー法を適用して解く⁵⁾.

3.鉄共振現象の解析結果

3.1 鉄共振現象

Table 1 Parameters used in the computation

μ : permeability (H/m)	Fig. 1
µ _r : reversible permeability (H/m)	Fig. 2
s : hysteresis parameter(Ω /m)	Fig. 3
A: cross-section area (m ²)	48.0 x 10 ⁻⁶
<i>l</i> : flux path length (m)	75.4 x 10 ⁻³
N: number of coil turns	100
R : resistance (Ω)	0.4
C: capacitance (F)	1.32 x 10 ⁻⁶

Table.1 に示す定数を用いて並列鉄共振回路の過渡解 析を行った.ここでコンデンサ容量Cの決定法であるが、 鉄共振現象は LC 共振に基づいているから、共振する条 件を勘案しなければならない.本論文においては、以下 の手順でコンデンサ容量Cを決定した.

- 1) 飽和領域に入る直前周辺の透磁率 µ を選び,
- 2) 線形回路におけるインダクタンス L を仮に決める。

3) 共振条件と励磁周波数からコンデンサ容量を決める。

Figs.5,6はそれぞれ入力電流、計算結果の出力電圧の時間波形である.周波数を一定1.0kHzとし電流の振幅を0Aから徐々に増加させ,鉄共振現象が始まる*t*=0.0168sで0.036A固定とする.

3.2 システムの状態遷移特性有値の共振現象

Fig.7 は、(9)式における状態遷移行列の固有値を時間刻 み幅ごとに計算し,時間軸を共通軸とした3次元可視化 の結果である.(9)式の行列 a は 3 行 3 列の正方行列であ るから各時間で 3 個の固有値をもつ.この固有値は,1 つは負の実数、残りの2つは互いに共役な複素数であり, 複素空間上で左半平面上に位置するため,系は絶対安定 であることがわかる.

Fig.7 Characteristic values changing of the state transition matrix a

Fig.8 Poincare' maps of characteristic values (t=0~0.0168)

P01-001

Fig.8,9 は,縦軸にそれぞれの固有値の時間変化率(微分値),横軸に固有値をプロットしたものであり,Fig.8 は,鉄共振開始前であり,Fig.9 は鉄共振開始後の固有値 軌跡を表したものである.それぞれの図中で,(a)は実数 のみの固有値,(b)は,複素固有値の実数部,(c)は複素固 有値の虚数部である.

4000 6000 8000 10000 12000 14000 16000

(c) Fig.9 Poincare' maps of characteristic values (t=0.0168~0.04)

Fig.8 と 9 を比較すると鉄共振開始前はすべての固有 値が正と負の上下で対象になっているが,鉄共振開始後 は,実数のみの固有値の軌跡が上下対称にならないこと がわかる.固有値の実数部は発振現象を減衰させ系の安 定化を促すが,正と負で位相が異なることは正の半周期 と負の半周期で減衰効果は同じであるが時間位相が異な ることを意味し,これが鉄共振特有の状態を呈する根源 であることが解明された.すなわち,固有値軌跡をポア ンカレ図法によって可視化することで,鉄共振現象が起 きているか否かを判断することが可能となった.

4.まとめ

本論文では, Chua 型磁化特性モデルを用いて, 並列 鉄共振回路の過渡解析を行い, 鉄共振時と非鉄共振時の 状態遷移行列の固有値軌跡について考察を与えた.

時間刻み幅ごとに計算される固有値の時間変化をポア ンカレ図上に可視化することにより,鉄共振時と非鉄共 振時の固有値軌跡に決定的な相違があることが判明した. 従来,鉄共振現象は電圧,あるいは電流のみで判断して いたが,固有値軌跡の可視化によって,現象の物理的理 解と特徴が明確に把握可能であることが判明した.

参考文献

- 早野誠治, "磁性材料の構成方程式に関する研究", 法政大 学学位論文 (1995-1)
- R. S. Varger, "Matrix Iterative Analysis", Prentice-Hall, NJ (1962)
- 3) 遠藤久,早野誠治,齋藤兆古,"可飽和インダクタンスを含む回路解析に関する考察",電気学会マグネティックス研究 会資料, MAG-02-139 (2002-10)
- 田中祐司,齋藤兆古:磁化特性のモデリングと電気機器可 視化解析への応用,第 15 回 MAGDA コンファレンス in 桐生 講演論文集, pp104-109, (2006-11)
- 5) 松尾佳祐,齋藤兆古, Chua 型磁化特性モデルによる鉄共 振回路解析 ,第 16 回 MAGDA コンファレンス in 京都 講 演論文集, pp285-290 (2007-11)