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Defect recognition in conductive materials by local 'magneticffield

measurement
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Among the various nondestructive testing methods, the electric potential method requires relatively
simple device and measurement. However, because of the high electrical contact resistance,
sometimes it is difficult to measure the correct local electric potentials by direct contact. In order to
overcome this difficulty, method is proposed which involves substituting the local magnetic field for
electric potential measurements. The comparison with the conventional electric potential method
demonstrates the usefulness this method, especially for materials with low resistivity.

. INTRODUCTION

In order to prevent accidents in aircraft, iron bridges, and
nuclear reactors, crack or defect recognition is of paramount
importance. Various nondestructive testing methodologies,
e.g., eddy current testing, x-ray computed tomography, ultra-
sonic imaging, and the electric potential method, have been
exploited and utilized. Among.these methods, the electric
potential method requires relatively simple instruments and
techniques.!~> However, because of the high electrical con-
tact resistance and relatively low resistance of the target,
sometimes it is difficult to measure the correct local electric
potentials by direct contact. In order to remove this difficulty,
we propose a new method which substitutes the local mag-
netic field for electric potential measurements. This makes it
possible to implement the electric potential method without
requiring direct contact to measure potentials. Most of the
defect recognition problems are, in essence, reduced to solv-
ing inverse problems. Previously, the current distributions in
the human heart and brain have been successfully estimated
from the local magnetic fields by the sampled pattern match-
ing (SPM) method. The SPM method has been exploited for
solving the inverse source problems, and this is applicable to
defect recognition problems, i.e., medium parameter identi-
fication problems.*~” We apply this SPM method with some
modifications to our new electric potential method. The com-
parison with the conventional electric potential method dem-
onstrates the usefulness of our new method, especially for
materials with low resistivity.

II. PROJECTIVE SAMPLED PATTERN MATCHING
METHOD | -

A. Key ideas

Let C, X, Y, be the system matrix, potential, and input
current vectors, respectively. Then, it is possible to write

cX=Y,, : B 1)

as a discretized electric current flowing system equation of a
conductive material having a defect or crack. This system
equation can be modified into

CoX=(Co—CO)X+Y=Y+Y, (2)
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where C is a system matrix without a defect or crack. This
means that the potential vector X is composed of the two
input vectors Y and Y,. The vector Y is the equivalent field
source vector -

Y=(Co—-O)X, ©)

caused by the defect or crack. The vector Y is the externally
impressed field source vector. Thus, the defect or crack rec-
ognition problems can be reduced into the equivalent source
vector Y searching problems. Obviously, this equivalent
source vector Y depends on the solution vector X. Further,
this solution vector X is a function of the externally im-
pressed field source vector Y,. Thereby, the equivalent
source vector Y can be expressed as a function of the im-
pressed field source vector Y. That is,

Y=£(Yy). 4)

Introducing this functional relationship into our SPM
method leads to the following advantages. First, this method
requires a quite low CPU resource compared with those of
the original SPM method, because the SPM process has to be
carried out only for the vectors satisfying the relationship
{4). Second, relatively accurate solutions can be expected,
because one of the characteristics of the solution vector Y is
known. Finally, changing the direction of vector Y, reaches
the correct solution vector Y similar to the computed tomog-
raphy. This new method is called the projective sampled pat-
tern matching (PSPM) method, because the functional rela-
tionship (4) is the directional dependence of the known
vector Y. In the present article, we examine the character-
istics of the PSPM method. As a result, we propose here the
simple implementation techniques to improve the accuracy
of PSPM method.

B. System equations

In Eq. (2), let us assume that Cg is a square matrix of
size m by m; X, Y, and Y, are the mth-order column vectors,
then taking the inverse matrix of C; and multiplying it to
both sides of Eq. (2) yields

X=C5Y+C5Y,=C5'Y+X,, (5)

where X, (=Cg ! Y,) is a potential vector without a defect or
crack. Subtracting X, from Eq. (5), we have

X,=X-X,=C;'Y. (6)
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FIG. 1. Single defect recognition by measuring the electric potential around
a target area. (a) y vs number of the pilot points in the processes of electric
potential method, (b) exact solution, (c) recognized defect by measuring the
electrical potentials (d) recognized defect by measuring the magnetic fields.
The number of subdivisions m=1801, and the number of measured points
n=72. The direction of the externally impressed current input vector Y,
was changed 72 times with 5° subdivision.

Generally, it is difficult to measure the entire difference
vector X, in Eq. (6) so that we can only obtain a part vector
X, of X;. This yields the system equations of the defect or
crack recognition problem. Namely, denoting n as a number
of measured points, we have

m
X,=DY=2, yd,, ™

i=1

where D and X, are the n by m partial matrix in Co ! and
measured difference vector with order n, respectively. The y;
and d; in Eq. (7) are the ith element of Y and ith column
vector in D, respectively.

C. Sampled pattern matching SPM method
If a point 4 takes the maximum of
7i=X;'di/(|Xp”diI)v i=112"-~1m’ (83)

then 4 is the first pilot point. If a point g takes the maximum
of

Yaj= X1 (dy+d))/(1X,]d,+ dy)), j=1,2,..‘,m,j¢h,(8b)

then g is the second pilot point. A similar process to Eq. (8a)
or (8b) is continued up to the first peak of y.>5
Thus, the pilot point solutions are given by the follow-

ing.
If i is a pilot point, then:

Yi= 1 s
o . . ) 9)
if i is not a pilot point, then:
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FIG. 2. Plural defects recognition by measuring the electric potential around
a target area. {(a) y vs pilot points in the processes of electrical potential
method, (b) exact solution, (c) recognized defect by measuring the electrical
potentials (d) recognized defect by measuring the magnetic fields. The num-
ber of subdivisions m=1801, and the number of measured points n=72.
The direction of the externally impressed current input vector Y, was
changed 72 times with 5° subdivision.

y;=0.

Pilot point solutions of Eq. (7) mean that the magnitude
of the solution is represented by the space occupying rate of
unit input.

D. PSPM method

The SPM method is applicable to inverse problems
where the solution vector Y is not a function of the known
function Y,,

Y#£(Yy). (10)

However, if a relationship (4) is established, then the
SPM processes are carried out only to the vectors d; (i
=1,2,...,m) satisfying the relationship (4).

If medium parameter identification problems satisfy re-
lationship (4), the SPM processes is continued up to the kth
pilot point until the following condition is satisfied:

|X| k m k ‘1
lxopl |24l 2 d-2 4 1)
p j=1 i=1 j=1

where the vector Xy, is composed of the measured potentials
having a defect or crack.

This method is called the PSPM method. The PSPM
method has the following advantages: (i) low CPU resource;
(ii) relatively accurate solutions; (iii) changing the projective
angles with Y, and taking the average of entire solutions to
reach the correct solution vector; (iv) the pilot point solutions
are available if the known vector X, encloses a target area.

Doi et al.
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FIG. 3. Improved plural defects recognition: (a) Improvement by shrinking
the target area, (b) and (c) show improved results by removing the pilot
points up to the first peak for the electric potential and its modified methods,
respectively. .

A curve obtained by plotting the pattern matching rate
in Eq. (8a) or (8b) versus number of the pilot points reveals
(i) if the curve continuously increases with addition of pilot
points then the target area has a single defect or indistin-
guishable plural defects; (ii) if the curve has a deflection
point then the object has plural defects. In this case, each of
the plural defects can be distinguished by shrinking the target
area or removing the pilot points up to the first peak value of
v. This is because the pilot points up to the first peak value of
+y provide globally good pattern matching vectors common to
the entire defects.

E. Examples

The two-dimensional electric potential method was cho-
sen as the example. The electric potential method was carried
out not only in the conventional way but also the modified
way, which measured the magnetic fields instead of the elec-
tric potentials.

Figure 1(a) shows one of the y versus number of pilot
points curves in the processes of the electric potential
method. Obviously, this curve continually increases with ad-
dition- of pilot points, so that the target area has a single
defect. In fact, results of PSPM method show the single de-
fect as shown in Figs. 1(c) and 1(d).

Figure 2(a) shows one of the y versus number of the
pilot points curves. This curve has a deflection point, so that
the target area must have the plural defects. In fact, the result
of the PSPM method shows the plural defects as shown in
Figs. 2(c) and 2(d).

Figure 3(a) shows improved plural defects recognition
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FIG. 4. The examples taking an average of the results obtained by electric
potential and its modified methods (exact solution): (a) two defects, (b) three
defects.

by shrinking the target area. Also, Figs. 3(b) and 3(c) show
improved plural defects recognition by removing the pilot
points up to the first peak of .

It must be noted here that the electric potential method
always yields overestimated results in defect size. Con-
versely, the modified method yields underestimated results.
Therefore, if it is possible to measure both electric potentials
and magnetic field, the defect will stand midway between the
results. Figure 4 shows examples of taking an average of
both results.

Thus, the electric potential and its modified methods in
combination with PSPM provide highly reliable results even
if the plural defects are included in the target region.

lil. CONCLUSION

As shown above, we have examined the PSPM method
and proposed the methods of the improvement for the plural
defects recognition problems. Examples have demonstrated
that the plural defects recognition is improved by our
method.
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Wavelet Solution of The Inverse Source Problems
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Abstract - Generally, the inverse source problem is reduced
into solving an ill-posed system of equations. This article
proposes a novel approach for the inverse source problem
employing the wavelet analysis. The wavelet analysis has two
distinguished abilities; one is the image data compression
ability and the other is the spectrum resolution ability of the
wave forms. Key idea is that the system matrix of the inverse
source problems is regarded as a two-dimensional image data.
The two-dimensional wavelet transform is applied to this
system matrix. Finally, we can obtain an approximate inverse
matrix of the system. A simple example demonstrates the
validity of our approach.

1. INTRODUCTION

Inverse problems are classified into two major categories,
i.e. one is the inverse parameter problem which evaluates the
medium parameters by applying the electromagnetic fields to
a target region and measuring its response; the other is the
inverse source problem which evaluates the electromagnetic
field sources from the locally measured electromagnetic
fields. Generally, most of the inverse problems are reduced
into solving the ill-posed system of equations.

Previously, we have proposed a method of solving for the
inverse problems, and successfully applied to the
biomagnetic fields as well as the nondestructive testing in
metallic materials [1,2].

In the present article, we propose a novel approach
utilizing the wavelet analysis. The wavelet analysis has been
studied for the image data compression and analyzing the
spectrum of image in informatics [3-6]. The wavelet analysis
has two- distinguished abilities; one is the image data
compression ability and the other is the spectrum resolution
ability of the wave forms. Key idea of our approach is that
the system matrix of the inverse problems is regarded as a
two-dimensional image data. The system matrix transformed
into the wavelet spectrum space is composed of the two
representative spectrums; one group has the larger absolute
value, the other has nearly zero value. After collecting the
spectrums having lager absolute value and building up the
square matrix, an inverse of the square matrix is evaluated.
Combining this local inverse matrix with the zero
rectangular matrix, we apply the inverse wavelet transform
to the resultant matrix. Thus, we have succeeded in
obtaining an approximate inverse matrix of the inverse
source problems.

Seiji Hayano,
Hosei University,

and Yoshifuru Saito
Kajino, Koganei, Tokyo 184, JAPAN

II. DISCRETE WAVELET TRANSFORM
A. One-dimensional wavelet transform

In the present article, we employ the Haar's analyzing

wavelets [3]. Let us consider a following linear
transformation.
X'=CX, M

where X is a data vector with order n; n must be a power of
2:and C is

[, ¢ 0 0 0 0]
¢ -¢, 0 0 0 o0
0 0 ¢ ¢ 0 0
el 0 a 0 0 @)
0o 0 0 O ¢ €
0 0 0 0 6 -6

In equation (2), the first, third, fifth, and the other odd
rows generate the components of data convolved with the
coefficients c,,c,. This corresponds to a weighted integral
operation. On the other side, the even rows generate the
components of data convolved with the coefficients ¢,,—c, .
This corresponds to a weighted differential operation [3,5].

In order to carry out an inverse linear transformation, the
coefficients c,,c, should be determined by a relationship:

c'C=1, 3)

where / is a n-th order unit matrix and a superscript T
refers to the transpose of matrix C.
From equations (2) and (3), we have

T+cl=1 )

Equation (4) has two unknowns c,,c, , but we have only

¢,.¢, , generally,

0271 >

one equation. To determine the coefficients
a following condition is considered:

0018-9464/97$10.00 © 1997 IEEE
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-c =0. (5)
From equation (4) and (5), we have

- =L (6)
C, 5 c, B
The pair of coefficient ¢,,c, in (6) is the Haar's
analyzing wavelets, which are the same as the Daubechies's
second order analyzing wavelets [3,4].

For simplicity, let us consider a data vector X with order
8

X=[J:X x, X, X, X X, X x,]r- @)

Applying the transform matrix C, to (7)

X=CX=[s, d s, d, 5, d, s 4d]. 8)

The elements in vector X' is sorted by using following
matrix:

M 0 0 0 0 0 0 0]
0 0 1 0 0 0 0 0
00 0 0 1 0 0 0
p 0 0 0 0 0 0 10 ®
*“lo 1 0 0 0 0 0 Of
000 0 1 0 0 0 0
000 0 0 0 1 0 0
0 0 0 0 0 0 0 1]
Thus, we have
PX=RCGX=[s s s s 4 4 4 dJ. (10)

Further transformation to the elements s,,s,,s,,s, in (10)
yields
XS S Q04444 (11)

Similar transformation to S,,S,,D,, D, in (11) yields

WX=[S D QD 4ddd. (12)
The transformation matrix used in (11) and (12) are
W =(R'C'XRG), WP =(B"C"XR'C'XRC), (13)

P 0 c, 0 B 0 c, 0
P': ¢ ‘: ‘ ": 2 “= : 14
SRS R R R

Equation (12) is the finally obtained wavelet spectrum.
The elements S ,D, in (12) are called the Mother Wavelet

coefficients, and the others are called the wavelet coefficients
at each level.
Inverse wavelet transform is carried out by

X=[WITweX,

oY =[(R"C )R CONRCT,
=(RCY (R'CY(R"CY,
=CIRICHT(RY(G Y (R

(15)

B. Two-dimensional wavelet transform

The discrete wavelet transform can be extended to the two
dimensions [3]. Usually, two-dimensional wavelet transform
is applied to a square matrix. In this article, two-dimensional
wavelet transform is generalized to a rectangular matrix.
The generalized two-dimensional wavelet transform is given
by

M’ =WMW, (16)

where M'and M are the transformed (spectrum) matrix
and original matrix with order n by m, respectively.
W and W, are the wavelet transform matrices with order n
by n and m by m, respectively.

The inverse wavelet transform is carried out by the
following equation:

M=W MW, %))

. THE INVERSE SOURCE PROBLEMS
A. Key idea

key idea is that the system matrix of the inverse source
problems is regarded as one of the image data. The system
matrix as an image data is transformed into a space of
wavelet spectrum. The space of wavelet spectrum is
composed of the two representative spectrums; one group has
the larger absolute value, the other has nearly zero value.
Collecting the spectrum having larger absolute value, we
evaluate an inverse matrix of the system contracted to the
non-singular size. Thus, the inverse wavelet transform yields
an approximate inverse matrix of the system.

B. An example
An example of the inverse source problems is the

estimation of current distribution on a film conductor from
the locally measured magnetic fields. The estimation of



current distribution on a film is reduced into solving a

following system equation

DX=Y, (18a)
or
i
dll dlZ b b dlu . Hl
dn da - - dwm 1,2 H,
. ) . b= . m>>n, (18b)
dlll dn2 M e dﬂ : H’l

where D,X and Y are a system matrix determined by the

Ampere's law, a current distribution vector to be estimated,
and a measured magnetic field vector, respectively. Because
of m>>n, it is difficult to determine the vector X. The
numbering of the current sources and measured magnetic
fields have an effect on the quality of the wavelet transform
{3,4]. In this paper, we employed a natural numbering.

Figure 1(a) shows a schematic diagram of the example.
Our problem is that the current distributions on the film
conductor is estimated from the locally measured magnetic
fields. Figures 1(b) and 1(c) show the exact current
distribution, and the measured magnetic fields, respectively.
Figures 1(d) shows the system matrix D determined by the
Ampere's law.

C. Approximate inverse matrix

In order to solve the system equation (18), we apply the
discrete wavelet transform to the system matrix. Namely, the
system matrix D is transformed into the wavelet spectrum
D' by

D' =W.DW!. (19)

Secondly, we take a square matrix S around the Mother
wavelet coefficient out of the entire wavelet spectrum D',
After we take an inverse of the square matrix S, this
inverse matrix S™ is embedded to the matrix Z with order
mbyn.

Dy, =5">1Z (20)

Equation (20) means that the inverse matrix S is
embedded at the top square region of Z .
Finally, an approximate inverse matrix D, of the

system is obtained by the two-dimensional inverse wavelet
transform:

Dty = W DLW, @1
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Fig.1. (a) A schematic diagram, (b) an exact current distribution,
(c) measured magnetic fields, and (d) the system matrix D
represented as an image data.

Figures 2(a) and 2(b) show a two-dimensional wavelet
spectrum D’ of figure 1(d) and an approximate inverse
matrix D, respectively.

D. Validity of the approximate inverse matrix

Mathematical validity of the inverse matrix is generally
carried out by means of the left- and right-inverse matrix
checks. In this inverse source problem, the left-inverse
matrix check D, D is not equivalent to the right-inverse

matrix check DD},

because the system matrix is a
rectangular. When the left-inverse matrix check D, D
becomes

D} D=1,

L .D=1, (22)
the solution vector can be uniquely determined. Where I,
is an identity matrix with order m .

When the right-inverse matrix check DD, becomes

DD, =1, (23)

The existence of solution vector can be confirmed. Where
I, is an identity matrix with order n .
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(a) (b)
Fig. 2. (a) Two-dimensional wavelet spectrum D' of the system,
and (b) an approximate inverse matrix D;’”m .

(a) (b)
Fig.3. (a) The left-inverse matrix check D, D and (b) the right-

inverse matrix check DD, .

Thus, the left-inverse matrix check means the uniqueness of
solution. The left-inverse matrix check shown in figure 3(a)
is similar to the identity matrix I_. This means that an
approximate solution vector could be expected. Also, the
right-inverse matrix check shown in figure 3(b) is the
identity matrix I, This means that the existence of solution

vector could be expected.

E. Wavelet solution
The current vector X in (18a) is given by

X=D. Y. (24)

Figures 4(a) and 4(b) show the estimated current
distribution on the film conductor and reproduced magnetic
fields, respectively.

Thus, we have succeeded in estimating the current
distribution from the locally measured magnetic fields.
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Fig.4. (a) The estimated current distribution on the film conductor,
and (b) the reproduced magnetic fields from the estimated currents.

IV. CONCLUSION

In the present article, we have proposed an inverse
approach employing the discrete wavelet transform. The
two-dimensional wavelet analysis is applied to the
rectangular system matrix as an image data. And the
approximate inverse matrix of the system is obtained from a
square part of the wavelet spectrum. Applying the inverse
wavelet transform to the approximate inverse matrix in the
wavelet spectrum space yields this approximate inverse
matrix in the original space. Further, we have checked up
the mathematical validity of the approximate inverse matrix.

The simple example concerning to the current estimation
from the locally measured magnetic fields has demonstrated
the validity of our approach.
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Abstract - Previously, we have proposed a method of solving
inverse problems, and successfully applied the method to
biomagnetic fields as well as the nondestructive testing in
metallic materials. In the present article, we propose a novel
inverse approach for the parameter determination problems
employing wavelet analysis. A simple example of parameter
determination demonstrates the validity of our wavelet
approach.

1.INTRODUCTION

Inverse problems are classified into two major categories,
i.e. one is the inverse parameter problem; the other is the
inverse source problem. For the inverse parameter problem,
it is possible to obtain a unique solution if the fields are
measured ideally; such as medium parameter identification
in human body employing the computed tomography (CT).
However, most of the inverse problems are generally reduced
to solving a system equation for which it is difficult to obtain
a unique solution. In order to overcome this difficulty, we
have previously proposed a method of solving the inverse
probiems, and successfully applied it to biomagnetic fields as
well as to nondestructive testing in metallic materials [1,2].

On the other hand, the wavelet analysis has been studied
for image data compression and analyzing the spectrum of
image in informatics [3-6].

In the present article, we propose a novel approach for the
inverse parameter problems employing wavelet analysis. The
key idea is that a system matrix of the inverse problems is
regarded as two-dimensional image data. The two-
dimensional wavelet transform is applied to this system
matrix. An approximate inverse matrix of the system is
obtained from the wavelet spectrum. We here consider a test
example in which the relationship between input and output
is evaluated from given input and output data. As a result,
the example demonstrates the validity of our wavelet
approach.

II. DISCRETE WAVELET TRANSFORM
A. One-dimensional wavelet transform
In the present paper, we employ Haar's analyzing

wavelets [3]. Let us consider a following linear
transformation

X'=CX, 1)

where X is a data vector with order n; n must be a power of
2;and C is

¢ ¢ O O 0 0]
. -, 0 0 0 0
0 ¢ ¢ 0 0
C= 0 0 ¢ -¢ (V) @)
0 0 0 - . ¢ ¢
0 0 0 0 - - ¢ -]

In equation (2), the first, third, fifth, and the other odd
rows generate the components of data convolved with the
coefficients c,,c,. This corresponds to a weighted integral

operation. On the other hand, the even rows generate the
components of data convolved with the coefficients ¢,,~c, .

This corresponds to a weighted differential operation [3,5].
In order to carry out an inverse transformation, the
coefficients ¢,,¢, should be determined by a relationship:

0271
C’'C=1, 3)
where I is a n-th order unit matrix and a superscript T
refers to the transpose of matrix C .
From equations (2) and (3), we have

G aci=1 @)

Equation (4) has two unknowns c,,¢, , but we have only
one equation. To determine the coefficients ¢,,c, , generally,
a following conditions is considered:

-c =0 (5)

1
From equations (4) and (5), we have

= =L 6)
<, 72=, c, ,/2_ (

The pair of coefficient c¢,,c, in (6) is Haar's analyzing
wavelets, which are equivalent to Daubechies's second order

0018-9464/97$10.00 © 1997 1EEE



analyzing wavelets [3,4].
For simplicity, let us consider a data vector X with order
8:

X=[x, x, X, X, X, X, X, x,]r< 7

Applying the transform matrix C, to (7) yields

X=CX=[s, d s d, s d s dJ. @®

4 4

The elements in vector X' are sorted by using the
following matrix:

o}

T 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
o 0 0 0 1 0 0 0
p 00 0 0 0 0 1o ©®)
*“lo 1t 0o 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
Thus, we have -
PX=PCX=[s § 5 5 d d 4 d]. (10)

Further transformation to the elements s,,s,,s,,s, in (10)
yields

PX=S S R0 4444, an

where

@ _prot B 0 |G 0
W& =(F'G'XRC), P.—{O 1.’C'— o Il 12)

4

Similar transformation to S,,S,,D,,D, in (11) yields

XS DR Ddddd. 4
where
we = (P' " C, "XP;le‘XPtCa)v
(14)

P 0 C, 0
P,": 2z I C,": z i

0 1, 0 I,
The wavelet transform of one-dimensional data with
order 8 is finally given by 3(=Log,8) steps of linear
transformation. Equation (13) is the finally obtained wavelet
spectrum. The elements S,,D, in (13) are called the Mother
Wavelet coefficients, and the others are called the wavelet

coefficients at each level.
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Inverse wavelet transform is carried out by

X =[O (W OX),

7Y =[(R"C,"XF' C/URCIY
=(BC)(R'CH(R"C)
= CR(C)T (B (R

(15)

B. Two-dimensional wavelet transform

The discrete wavelet transform can be extended to two
dimensions [3]. Usually, two-dimensional wavelet transform
is applied to a square matrix. In this article, two-dimensional
wavelet transform is generalized to a rectangular matnx.
The generalized two-dimensional wavelet transform is given
by

M' =W MW, (16)

where M'and M are the transformed (spectrum) matrix
and original matrix with order n by m, respectively.
W, and W, are the wavelet transform matrices with order n
by n and m by m, respectively.

The inverse wavelet transform is carried out by the
following equation:

M =W MW, (17)

II. THE INVERSE PARAMETER PROBLEMS
A. Wavelet approach

The key idea is that the system matrix is regarded as one
of the image data. The system matrix as an image data is
transformed into a space of wavelet spectrum.

Let us consider an inverse parameter problem. The system
X = CY can be modified by exchanging the elements in the
vector Y and matrix C, viz.

X=YC, (18)
where a matrix ¥ and vector C are the system matrix
composed of the elements in Y and parameter vector to be
determined, respectively. In order to solve for (18), we apply
the two-dimensional discrete wavelet transform to (18). The
system matrix Y is transformed by
Y =WYW!. (19)

From the result of (19), it is found that the spectrum
matrix can be classified into two major groups. One group
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takes the large absolute value, and the other takes the
smaller absolute value. We take a square matrix S around
the Mother wavelet coefficient out of the entire wavelet
spectrum Y’ . Generally, the square matrix S around the
Mother wavelet coefficients have large values. After taking
of the inverse matrix of S, we embed this inverse matrix
into a zero matrix Z with order mby n.

Yo .,=S">L 20)
Equation (20) means that the inverse matrix S is
embedded at the top square region of Z.

The approximate inverse matrix Y.,

of the system is
obtained by the two-dimensional inverse wavelet transform:

YA-plpm = WHTY;;MWM' (21)

Finally, the parameter vector of system C is given by

C= Y;,‘W X (22)
Thus, the parameter vector C can be obtained from the
known input Y and output X.

B. An example

Let us consider an example of parameter identification
problems. For this example, the current and magnetic field
distribution are known vectors, but the relationship between
them is unknown. This example is reduced to solving for the
following system equation

X =YC, (232)
or
o]
x| [» y, 0 0] c,
% 0 0 y y, O c}3  (23b)
x| |0 0 ¥ Y
-c"'.J

where C,XandY are a vector of system parameter to be

determined, an output vector, and the system matrix
composed of the input current, respectively.

Figure 1 shows an example of a paramecter identification
problem from both input currents and output magnetic field
vectors. Actually, exact parameter of the vector C in (23b)
are determined by the Ampere's law. We verify that the exact
parameter can be identified by the wavelet approach.

-
~

[ )

Q 1

[CIR IR

Current density [A/m?]
Magnetic field [A/m]
N ~3

1 2 5 10 15 20 25 30
Position

Position

(®)

(©)
Fig.1. (a) An input current vector Y, (b) an output magnetic field
vector X, and (c) the system matrix.

(@) ' (b)
Fig. 2. (a) Two-dimensional wavelet spectrum Y’ of the system,
and (b) an approximate inverse matrix Y;’m .

Figures 1(a), 1(b) and 1(c) show an input current
distribution, an output magnetic field distribution, and the
system matrix of this parameter identification problem in
(23b), respectively.

Figures 2(a) and 2(b) show a two-dimensional wavelet
spectrum Y’ of the system in figure 1(c) and an
approximate inverse matrix Y, . of the system, respectively.

Finally, the parameter vector C in (23) is given by

C=r_.X (24

Figures 3(a) and 3(b) show the determined parameter of
the system, and reproduced magnetic field distribution,
respectively. The result in 3(a) coincides with those of the
Ampere's law. Actually, the parameter of the system is
determined by the Ampere's law. Thus, we have succeeded
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Fig.3. (a) The decided system matrix, and (b) the reproduced
magnetic field distribution by the estimation system matrix.
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(a) (b)
Fig.4. (a) The left-inverse matrix check Y, Y and (b) the right-
inverse matrix check YY,» .

in estimating the parameter of the system from both the
input and output vectors.

C. Validity of the approximate inverse matrix

Mathematical validity of the inverse matrix is generally
carried out by means of the left- and right-inverse matrix
checks. In this inverse parameter problem, the left-inverse
matrix check Y. Y is not equivalent to the right-inverse
matrix check YY,_ ., because the system matrix is
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rectangular. When the left-inverse matrix check Y. Y
becomes

Y2 r=I,

Appi m

(25)

the solution vector can be uniquely determined, where I is
an identity matrix with order m.
When the right-inverse matrix check YY,, becomes

Y., =1, (26)

the existence of solution vector can be confirmed, where 1,

is an identity matrix with order » .

Thus, the left-inverse matrix check means the uniqueness
of solution. The left-inverse matrix check shown in figure
4(a) 1s similar to the identity matrix I_. This means that an

approximate solution vector could be expected. Also, the
right-inverse matrix check shown in figure 4(b) is the
identity matrix I, .This means that the existence of solution

vector could be expected.

IV. CONCLUSION

In the present paper, we have proposed a novel approach
for the inverse parameter problems employing the wavelet
analysis. The wavelet analysis is applied to the system
matrix of the inverse parameter problems. The results reveal
that our wavelet approach is possible to get an approximate
inverse matrix of the system. A simple example has
demonstrated the validity of our approach.
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Abstract. We have proposed a new dose optimization method for proton and heavy ion therapy
using generalized sampled pattern matching, where an optimal beam weight distribution for
scanning is obtained as a solution. Using water phantom models, one-dimensional lateral
and depth dose distributions were separately optimized, each resulting in a uniform dose
distribution within a target region and minimum dose fall-off to minimize undesired irradiation
onto neighbouring tissues. Subsequently, we have applied the technique to broad beam three-
dimensional proton therapy, leading to a homogeneous dose distribution inside a target and
minimized distal and lateral dose fall-off for most convex tumour shapes.

1. Introduction

Optimization of proton or heavy ion therapy ideally requires a uniform dose distribution
within a target volume, a zero dose level in critical organs, and a minimum dose level in
other normal tissues.

Several optimization techniques have been reported using a least-squares method
(Pedroni 1995) or an iterative deconvolution scheme (Lind 1988, Brahme et al 1989)
to obtain beam weight solutions for a given dose distribution. The unconstrained least-
squares method may lead to unphysical negative beam weight solutions. The solution also
depends on initial values, and it is not always easy to guess good initial values. This
initial value problem may be overcome by employing random methods such as simulated
annealing; however, this better strategy still has the negative solution problem. Meanwhile,
the iterative deconvolution method is not directly applicable for inhomogeneous media,
because the formulation is based on convolution of a spatially invariant energy deposition
kernel.

We have proposed a new dose optimization method for proton and heavy ion therapy
using generalized sampled pattern matching (Saito and Yoda 1996), where the resulting beam
weights are always non-negative as for the previous iterative deconvolution scheme, and
moreover a heterogeneous medium may be considered once we calculate spatially varying
energy deposition kernels using Monte Carlo methods (Goitein and Sisterson 1978) or other
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approximated formulations such as semi-infinite slab models (Larsson 1987, Russell et al
1995). In this report, we show preliminary dose optimization results for homogeneous water
phantom models.

2. Principle of generalized sampled pattern matching

Generalized sampled pattern matching (GSPM) is a generalization of an inverse problem
solver, sampled pattern matching (Saito et al 1990, Saotome et al 1993, 1995, Yoda et a!
1997). The original sampled pattern matching (SPM) provides only a one-bit (0 or 1)
solution while the GSPM gives a multiple-bit solution. Here, we describe the GSPM
principle using the terminology of three-dimensional proton dose optimization.

The basic equation we want to solve is given as follows:

D(r) =Y _ NiHi(r) (M

where 7 is a three-dimensional spatial position (x, y,2), D(r) is the desired dose distribution

inside the medium, H;(r) is a dose distribution given by a monoenergetic Gaussian beam
often called an energy deposition kernel and N, is a beam weight or the number of incident

particles. In GSPM, the beam weight solution N;s are approximated by quantized discrete

values, and therefore the solution process is based on a discrete search algorithm. The
GSPM involves two important aspects: unique objective function and a unique solving

procedure.

The objective function for the GSPM algorithm is cosine of the vector angle between
a desired dose distribution vector U = (uy,uz,...,U4n) and a theoretically calculated dose
distribution vector V' = (v1, V2, ..., v,,) where m denotes the number of dose sampling
points. In other words, each u; (i = 1,..., m) corresponds to a desired dose D(7))
in equation (1) that is predetermined, whereas eachvy (i =1,..., m) corresponds to a

theoretically calculated dose given by the right-hand side of equation (1). The cosine of the
angle 0 of the above two vectors U and V is given by the inner product of the corresponding
normalized vectors as follows:
u-v
UiV
cos@ is called the pattern matching index. If the two vectors U and V lie in a same
direction, then the value of cos6 is 1.0, giving the best pattern matching regardless of the
vector amplitudes {U| and |V|. Conventional optimization methods always try to minimize
the squared sum of the difference between the desired values and the calculated results;
consequently, we have to consider absolute dose levels from the beginning possibly leading
to undesirable local minimum solutions. In contrast, the GSPM finds a normalized beam
weight distribution as a solution thereby highly reducing such local minimum problems.
The absolute beam weight or irradiation dose can easily be obtained by dividing the desired
absolute dose by the calculated relative dose after the optimization.
The optimization procedure resembles piling building blocks on the floor one-by-one.
In this case, we add the individual beams, H;(r) (defined in equation (1)), together in an
incremental fashion. Each beam is added with an incremental or unit beam weight (of say
0.1), and the same beam may be added with this incremental weight several times in the
procedure if necessary. The first step is to choose one beam from the set of beams {H;(7)}
that maximizes cos@. For example, consider a one-dimensional problem of finding the
weighting factors in the superposition of monoenergetic Bragg peaks to obtain a spread-out
Bragg peak (i.e. the one-dimensional version of equation (1)). The beam that maximizes

(2)

cosf =




~
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cos 6 is the most energetic beam (i.e. the beam with the longest range) because for all other
beams there will be some terms in the sum U - V = Y u,v; which are zero. The beam
with the longest range is the ‘most important’ beam in the superposition, and it is the one
that is recognized first by the pattern matching index. The optimization process continues
by adding in beams incrementally such that the pattern matching index, cos 8, is maximized
for each addition step. This is repeatedly performed until all possible beams are included.
Finally, we obtain an optimal weight distribution by finding the highest pattern matching
index for all the combinations of beams considered.

Figure 1 shows the process of finding the solution. For simplicity a one-dimensional
example is shown. The GSPM yields a solution after placing all the possible beam weights
as shown in figure 1. The optimal weight distribution is obtained by selecting the distribution
with the highest value of cos8. This is represented by one of the intermediate diagrams
in figure 1. In this figure the incremental or unit beam weight is chosen to be 0.1 and the
maximum weight is set at 1.0 thereby providing a 10-step dynamic range for the optimal
weight solution. For more precision, we simply choose a smaller unit weight such as 0.01
while maintaining the maximum weight unchanged. All the calculations were initially done
by Mathematica (Wolfram 1991). Subsequently, the GSPM routine was coded by C and
called from inside Mathematica.
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S0 E s 00l -
o —> 4 —
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209 2009
% ]
3 3
E m) eocee mp £
2 2
Y02 v 02
2 01 2 01
=0 S0
& — K —
Lateral beam position or Lateral beam position or
energy variation energy variation
Figure 1. Diagram of solution search processes of generalized sampled pattern matching
(GSPM). The solution is given as the beam weight distribution having the highest pattern
matching index, cosf.
3. Results

3.1. One-dimensional lateral dose optimization

The lateral dose distribution D(x, zo) at depth z; is given as follows:

. —1iA 2 /2
D,z = Y NTREE 2D s 4 3)
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Figure 2. Results of one-dimensional lateral dose optimization: (a) the desired beam profile
{dots) as compared with the profile obtained by the GSPM procedure (full curve); (b) the beam
weight pattern required to generate the GSPM dose distribution shown in (a); (¢) the beam
profile generated by a uniform beam (thin curve) compared with the profile generated by the
GSPM procedure (thick curve).

where x denotes the lateral coordinate, N, is a beam weight, Ax is a step size for scanning,
o is a 1/e beam radius at the depth zo, and S(E,zp) 1s a stopping power at the depth 2z
generated by a broad parallel beam having an initial energy of E.

Figure 2(a) shows a desired lateral dose distribution (dots) and the optimized dose
distribution (full curve) calculated by the GSPM algorithm, where the desired lateral dose
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(a)

Relative dose level

J

0 S0 100 150 200

Depth in water (mm)

Relative beam weight

0 1}1 2.‘0 ) 30 4A0 ' 5.0
Water equivalent thickness of
energy degrader (mm)

Figure 3. Results of one-dimensional depth dose optimization. (a) The desired beam profile
(dots) as compared with the profile obtained by the GSPM procedure (full curve). The numbev
of dose sampling points in the uniform region was 40, and thus it looks like a thick line. () An
optimal beam weight solution as a function of energy degrader thickness, where monoenergetic
proton beams of 50 different energies with a constant range decrement of 1 mm irradiate a water
sample.

fall-off was given by the Gaussian distribution characteristic for a single pencil beam. Figure
2(b) depicts the optimal solution (dots) of lateral beam weights. The full curve was drawn
only for easier observation. In figure 2(c), the optimized dose distribution (thick curve) is
compared with the dose resulting from a uniform beam (thin curve). These results indicate
that the optimization minimizes the lateral dose fall-off to the physical limit while providing
a homogeneous dose inside the target.

3.2. One-dimensional depth dose optimization

The depth dose distribution on a central axis D(0, z) generated by a broad parallel beam is
given as follows:

D(0,2) =Y _ N;S(E;,2) )
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Figure 4. Diagram of the broad beam three-dimensional proton therapy system.

where z denotes the depth coordinate, N; is a beam weight of an initial energy E;, and
S(E;, z) is stopping power at the depth z generated by the beam having the initial energy
of E;. In this paper, the relative stopping power has been taken from measurements made
on the 187 MeV broad proton beam from the Gustav Werner synchrocyclotron in Sweden
(Larsson 1961).

Figure 3(a) shows a desired depth dose distribution (dots) and the optimized dose
distribution (full curve) using the GSPM procedure, where the desired distal dose fall-off
was given by the fall-off of a monoenergetic beam having the same range. Monoenergetic
proton beams of 50 different energies with a constant range decrement of 1 mm irradiate
a water sample. The number of dose sampling points in the uniform region was 40, and
thus it looks like a thick full line. Figure 3(b) depicts an optimal beam weight distribution
as a function of water equivalent thickness of an energy degrader. The results indicate
that the optimization minimizes the distal dose fall-off to the physical limit while giving a
homogeneous dose distribution inside the target. The overshoot at the distal corner results
from the ideal fall-off characteristic provided as a part of the desired distribution.

As shown in Figure 3(a), we placed only three dose sampling points at the plateau region
for the desired dose distribution because we do not know the exact dose level in this region
beforehand. The GSPM pattern matching procedure utilizes the vector inner product given
by equation (2), and therefore the assigned sampling point density automatically corresponds
to the weighting coefficient of the pattern matching calculation.

3.3. Application to broad beam three-dimensional proton therapy

Figure 4 shows a diagram of a broad beam three-dimensional proton therapy system (Kanai
et al 1983a). The broad beam that runs in parailel irradiates a target inside a body through
a variable energy degrader, a multileaf collimator, a fixed bolus and a dose monitor. A
computer receives dose signals from the dose monitor; subsequently, the computer transmits
control signals to the energy degrader and the multileaf collimator during irradiation.

In this system, the treatment volume is layered according to the shape of the distal
surface of the target, and the dose is built up using the energy degrader, the multileaf
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Figure 5. Results of depth dose optimization for the broad beam three-dimensional therapy
system. The optimization was performed along the depth-directed line including the deepest
point of the target. (a) The desired depth dose distribution (dots) is compared with the optimized
dose distribution (full curve). The number of dose sampling points in the uniform region was

18, and thus it looks like a thick line. (b) An optimal beam weight is shown as a function of

energy degrader thickness, where monoenergetic proton beams of 25 different energies with a
constant range decrement of 2 mm irradiate a water sample. (c) The optimized dose distribution
(full curve) is compared with a monoenergetic Bragg curve (dots).




2418 K Yoda er al

Relative dose level

Figure &. Three-dimesdional plots Lak={f) of the dose distribution daring opLimied arradiaricn

collimator and the bolus. When the range is shorened by increasing the degrader thickness,
the irradiated field aperture is changed using the mululeaf collimator to maintain conformal
irradiation.

The absorbed dose contribution 10 a point at depth 2 and distance x from a central
anis of & Gaussian proton beam having an energy £ and 2 beam weight N{E) 15 given as
fiollovs:

MHE , 2) {5)

()"
where @iz} is a | /e beam radius at the depth z and S(E.z) I5 a stopping power. In this
calculation, the initial 1/e radius of the incident Gaussian beam is set al 1 mm, and the
beam radius in water has been taken from measuremenis made on the 177 MeV proton
heam from the PS1 cyclotron in Switzerland (Scheib er al 1994). Further, it is known thal
a broad collimated beam can be generated by a symmation over a finite number of narrow
Gaussian beams (Brahme ef al 1981), and this idea was used for the present caleulation
The edge scatlering a1 the collimator wall were ignored for simplicity.

Figure 5{a) shows a one-dimensional desired depth dose distribution (dots) and the
optimized dose distribution (full curve) using the G5 PM procedure, where the optimizalion
was performed along the depth-directed line including the deepest point of the target. The
number of dose sampling points in the uniform region was 18, and thus it looks like a thick
line. Again the desired distal dose fall-off was given by the fall-off of a monoencrgelic
beam having the same range. Figure 5(h) depicts an optimal beam weight solution as 4
function of energy degrader thickness. Monoenergelic proton beams of 25 different energics
with constant range decrements of 2 mm irradiate the medium Figure S(c) shows the

Dix.2) = N(E)
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Figure 7. Isocontour plot of the optimized dose distribution.

optimized dose distribution (full curve) and a monoenergetic Bragg curve (dots), indicating
that the optimization minimizes the distal dose fall-off while providing a homogeneous dose
distribution inside the target.

Figures 6(a)-(d) show three-dimensional plots of the dose distribution during the
optimized irradiation, while figure 7 gives an isocontour plot of the final dose distribution.
Although we have optimized the dose distribution only in a depth direction, the lateral dose
fall-off was also practically optimized due to the target shape characteristic. We suggest
that for most convex cancer targets the proposed optimization works well for broad beam
three-dimensional proton therapy with an advantage of minimized distal and lateral fall-off.
The one-dimensional GSPM calculation time using a Power Macintosh 8100/100 MHz was
of the order of 10 s depending on the number of beams considered.

4. Discussion

In this report we show preliminary results using homogeneous water phantom models.
However, once we calculate spatially varying energy deposition kernels using Monte Carlo
methods or other analytical approximations such as semi-infinite slab models, it is possible
to perform dose optimization in a heterogeneous body using the GSPM method. We have
demonstrated one-dimensional examples followed by an application to the broad beam
therapy system; however, the approach can be directly applied to a general three-dimensional
spot scanning method (Kanai er al 1980, 1983b). The dose optimization for the three-
dimensional spot scanning in heterogeneous media will be reported elsewhere. The GSPM
procedure can also be applied to dose optimization of other radiotherapy means including
photon, electron and heavier charged ions by considering RBE.
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