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Abstract:Previously,faster magnetic field computation 
using locally orthogonal discretization, was proposed 
for two-dimensional magnetic field problems [ l -31.  
This method is now applied to the saturable magnetic 
field problems. The locally orthogonal discretization 
method requires a single potential to establish the 
upper and lower bounded solutions so that the func- 
tional as well as potential are evaluated in the most 
efficient manner. Application of this new method to 
the saturable magnetic field problems yields the 
excellent results even though a small number of 
elements is employed. 

INTRODUCTION 

flux density B is given by 

B = p H  , (2) 

where p is a permeability of medium. The flux den- 
sity B has to satisfy the following condition 

V - B = O  . (3) 

In order to satisfy the condition ( 3 ) ,  it is as- 
sumed that the flux density B is represented by a 
vector potential A , viz., 

B = V X A  . (4) 

Recently, the finite element method has been exten- 
sively applied to the various engineering and physi- 
cal problems. When we apply the finite element method 

By means of Eqs. (2) and (4) a governing equation 
of two-dimensional magnetostatic field is written by 

to the field problems, then it is difficult to know JC (l/p)V XA dl - Js J - ds = 0 . (5) 
how close the numerical solution is correct solution. 

Voronoi-Delaunay diaxram To overcome this difficulty, a dual energy finite 
element method which yields upper and lower bounded 
solutions to the correct solution has been proposed 
[4,5]. Nevertheless, it remains a serious problem 
that the dual energy finite element method yields an 
improved functional but never provide the improved 
local solutions with lower computational cost. To 
remove this difficulty, a new method which uses a 
single potential based on the geometrical dual prop- 
erty of locally orthogonal discretization has been 
proposed[1-3]. 

In this paper, we apply this new method to the 
saturable magnetic field problem. As a result,fairly 
reduction of the computational cost and time can be 
achieved by the locally orthogonal discretization 
method for the saturable magnetic field problems. 

THE LOCALLY ORTHOGONAL DISCRETIZATION METHOD 

Basic equations 

On the two-dimensional x-y plane, magnetic field H 
is related with the current density J as 

Dalaunay triangulation of arbitrary set of points 
is constructed by considering the properties of its 
geometric dual i.e., the set of Voronoi polygons. 
Delaunay triangles are related to Voronoi polygons in 
that the circumcenters of Delaunay triangles are the 
vertices of the Voronoi polygons. Figure 1 shows the 
triangles in a Delaunay mesh. The Voronoi polygons 

- 4  j 
Fig. 1. Voronoi-Delaunay diagram , and locally 

J-, H - d l  = I, J - d s  , (1) 

orthogonal coordinate. where c is the path enclosing the area s .  Magnetic 
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associated with these Delaunay triangles are shown by 
dashed lines in this figure. By considering Fig.1, 
it is obvious that the Delaunay triangles and the 
Voronoi polygons are locally orthogona1:each triangle 
side is perpendicular to the corresponding Voronoi 
polygon edge. Further, two complete but independent 
sets of nodal variables may be defined on this 
Voronoi-Delaunay diagram : one is located at the ver- 
tices of the Delaunay triangles ; and the other is 
located at the vertices of the Voronoi polygons. 
Thus, the govening equation (5) may be discretized by 
the Delaunay mesh or the Voronoi mesh system. 

Node equations 

On the local coordinate system shown in Fig.1 , 
nodes i and j are located on the boundary between the 
regions 1 and 2, where it is assumed that each of the 
Delaunay triangles takes a distinct permeability p .  

This means that a flux desity B, ( =a A /  a y ) in the 
direction of x-axis is common to both regions 1 and 2 
in Fig.1. A simple Lagrange interpolation between the 
nodes i and j in Fig.1 yields a trial function for 
the Delaunay system as 

where a is the distance between nodes i and j. Inte- 
grating over a portion of the Voronoi polygon en- 
closing node i after substituting E q . ( 6 )  into Eq.(5) 
yields 

Integration of Eq.(5) for the other portions of 
Voronoi polygon enclosing node i is carried out in 
the same way as Eq.(7). The full set of node equa- 
tions gives a Delaunay triangle system of equations, 
which satisfies the continuity of flux density be- 
tween the adjacent Delaunay triangles. 
On the other hand, the nodes k and 1 are located on 

the x-axis in Fig.1. In this case, a field intensity 
H, [ = - ( l / p  ) d A/ a x ] is common to both regions 1 
and 2. In order to satisfy this boundary condition, 
it is essential to employ the two different trial 
functions given by 

Integrating over a portion of the Delaunay triangle 
enclosing node k after substituting Eqs.(Ba) and (8b) 
into Eq.(5) yields 

Integration of Eq.(5) for the other portions of 
Delaunay triangle enclosing node k is carried out in 
the same way as Eq.(9). The full of node equations 
gives a Voronoi system of equations, which satisfies 
the common field intensity between the adjacent 
Delaunay triangles. 

Determination of permeability P 

On the saturable magnetic field, the permeability 
p in Eq.(5) is essentially represented as a function 
of the flux density B o r  field intensity H. In this 
paper, it has been assumed that the permeability p 
takes a distinct value in each of the Delaunay trian- 
gles, so that a magnitude of the flux density or  
field intensity in a Delaunay triangle can be easily 
calculated by means of the two orthogonal components 
of the flux density or  field intensity. The Delaunay 
system of equations has been derived by using the 
continuity of flux density between the Delaunay tri- 
angles. This means that the permeability p of 
Delaunay system must be determined as a function of 
the flux density B. On the other side, the Voronoi 
system of equations has been derived by using the 
common field intensity between the Delaunay trian- 
gles. This means that the permeability p of Voronoi 
system must be determined a s  a function of the field 
intensity H .  

Hybrid potential 

At the interface between the different materials 
taking the different permeabilities, both of the con- 
tinuity of flux density and the common field inten- 
sity conditions must be simultaneously satisfied. In 
the most of the numerical methods,one of these bound- 
ary conditions is rigorously satisfied and the other 
is approximately satisfied. The Delaunay system rig- 
orously satisfies the condition of flux density. On 
the other side, the Voronoi system rigorously satis- 
fies the common field intensity condition. Therefore, 
both of the Delaunay and the Voronoi systems comple- 
ment the boundary conditions each other. This sug- 
gests that the convergence of the numerical solution 
may be accelerated by averaging the approximate 
solutions in Eq.(7) and Eq.(9). For example,the mid- 
side potential A, in Fig.1 is given by 
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An example 

v n  

To illustrate the method , we applied it to the 
calculation of the magnetic field in ferromagnetic 
material of square cross-section. By symmetry, only 
1/4 part of the square must be computed as shown in 
Fig.2. Figure 3 shows a B-H characteristic of the 
ferromagnetic material. 

Fig. 2. 

Fig. 3. 

A=O 
A ferromagnetic conductor of square cross- 
section. 

0 7000 
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8-H chracteristic of  the ferromagnetic 
conductor. 

Figure 4 shows the results of computations obtained 
by the Delaunay and Voronoi systems. At the points 
of inflection on the equipotential lines in Fig.4, 
notable difference between the Delaunay and Voronoi 
solutions may be observed. Figure 5(a) shows a hybrid 
potential distribution obtained from the results in 
Fig.4. By considering the results in Fig.5(a), it is 
obvious that our new method provides an excellent re- 
sult compared with the traditional first order finite 
element solution in Fig.5(b). It must be noted that 
each of the Fig.4(a) and Fig.4(b) has only 1/4 of the 
nodes employed in Fig.5(b). 

CONCLUSION 

As shown above, our locally orthogonal discre- 
tization method based on the geometrical duality of 
Delaunay triangles and Voronoi polygons is still ef- 
fectively applied to the saturable magnetic field 
problems. To obtain solutions of similar accuracy in 

an example problem, the new method required about 1/4 
of the nodes and considerably less computer time than 
the traditional first order finite element method. 

Fig. 4. Computational results. (a)Delaunay system so- 
lution : (b)Voronoi system solution ;and both 
systems evaluated the 64 node potentials. 

Fig. 5. Comparison of the traditional first order fi- 
nite element with the new method. (a)Hybrid 
potential obtained from the Delaunay and 
Voronoi solutions in Fig.4. (b)The tradition- 
nal first order finite element solutions, 
where the 256 node potentials were evaluated. 
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