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ABSTRACT: This paper proposes a method of electromagnetic field distribution analysis by means of
image processing. The key idea of our image processing methodology is that each of the pixels
representing an image is regarded as a kind of potential in vector fields. Based on the vector calculus in
classical physics, any static and dynamic image can be obtained by the solutions of Poisson- and
Helmholtz- type partial differential equations, respectively. This makes it possible to handle any image as
an analytical and continuous quantity. As an example of the image Helmholtz equation, we have
evaluated the magnetization process of a grain-oriented silicon steel sheet from its magnetic domain
images obtained by a scanning electron microscope. The magnetization curve was computed from the
domain images obtained by the solutions of image Helmholtz equations. The state transition matrices
derived from the Helmbholtz equation turned out to be one of the evaluation methodologies linking
magnetization process and magnetic domain behavior.

1 INTRODUCTION

Numerous visualized images can be currently
obtained by various methods, e.g. Charge
Coupled Device (CCD), Magnetic Resonance
Image (MRI), etc. Scanning Electron Microscope
(SEM) also provides images representing the
electron array of materials and is widely used for
evaluating properties of magnetic materials [1-3].
Observation of magnetic domains from such
images is one of the important standards for
evaluating the phenomena in magnetic materials,
such as magnetic saturation and magnetic
hysteresis. In most cases, such tasks require a
high degree of expertise.

Recently, an image processing methodology
based on classical physics has been proposed.
Regarding an image as a scalar or a vector
potential field, the conventional vector operations
applied to the image become useful tools for
image processing as well as for computer
graphics. As a result of that strategy, any digital

images can be represented by partial differential
equations. Particularly, a solution of the image
Helmholtz equation gives the dynamic images,
e.g., computer graphics animation and moving
objects captured by video camera. This approach
makes it possible to handle the dynamic images,
which are composed of several static images such
as frames, as continuous quantity. Further, a
characteristic value of the differential equation
corresponds to a physical constant so that our
approach has capability for identifying the
characteristics of physical systems from
visualized information.

This paper presents a method of evaluation of the
magnetization process of a grain-oriented silicon
steel sheet by means of the image Helmholtz
equation. We have estimated the characteristic
values from the magnetic domain images

_obtained by SEM, and computed a magnetization

curve from each of the SEM images. As a result,
we have succeeded in confirming the
conventional magnetic domain theory.
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2 IMAGE PROCESSING BY
HELMHOLTZ EQUATION

2.1 Image Helmholtz equation

Many physical dynamic systems are governed by
the Helmholtz type of equations. Assuming that
an image is a scalar field U, any dynamic
images with arbitrary resolution are also given as
a solution of the Helmholtz equation:

V2U+e—?—U=—a, (1)
Ja

where €, a@ and o denote a moving speed
parameter, a transition variable and an image
source density, respectively. The first and the
second term on the left in Eq.(1) represent the
spatial expanse and transition of image to the
variable «, respectively. In case of movies, the
variable o replaces the time #. The first term
on the left in Eq.(1) represents a static image and
the image source density o is given by
Laplacian operation to a final image so that the
final image U, is obtained as a solution of

VU g = 0. )

This means that the governing equation of static
images is the Poisson equation [4].

2.2 Solution of the image Helmholtz equation

The modal analysis of Eq.(1) gives a general
solution:

U(a)= CXP(‘AQ)(USmn “Uripu )+ Usiar» 3)

where U, and A are an initial image and a
state transition matrix, respectively [5]. The
values € and o in Eq.(2) are reduced into the
matrices A and Ug,, . It should be noted that
the matrix A is unknown, since the value € in
Eq. (1) is not given. The state transition matrix
needs to be determined from the given images.

2.3 State transition matrix
The state transition matrix A is a key to

generate the dynamic image because it
corresponds to the characteristic values, which
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are the reciprocal of time constants in various
engineering applications. In most cases, the state
transition matrix is given and derived from
various conditions as well as from physical
constants of the system. In such a case, we are
able to obtain its solution uniquely. In our case,
however, we have to determine it from several
images representing the results. The process
discovering the conditions from the results is an
inverse problem.

If we define the image U,, when the variable

a takes an arbitrary value Aa from the
interval between the initial and final image, then
it is possible to determine the state transition
matrix A by modifying Eq.(3).

U, -Up,
A=—tig e U rmt | @)
Aa v Start v Final

Therefore, it is possible to analytically generate
the dynamic image by substituting Eq.(4) into
Eq.(3).

3 ANALYSIS OF MAGNETIC DOMAIN
MOVEMENT

3.1 Magnetic domain images by SEM

Fig.1 shows the magnetic domain images of a
grain-oriented silicon steel sheet by SEM at the
magnetic flux densities B=0, 1.5, 1.7 and 1.8 T
when the magnetic field strengths are equal to
H =0, 20, 40 and 140 A/m, respectively. Each of
the images has resolution of 256 by 256 pixels.

3.2 State transition matrices and their physical
meaning

Let us consider the magnetization process using
the image Helmholtz equations. In this case, the
flux density B is assumed to be an average of
contrast of the image because Fig.1 corresponds
to (B: B, 0)=grad A, x n,. Moreover, the transition
variable o in Eq.(1) is the magnetic field H so
that Egs.(1) and (3) are respectively rewritten by:

2 d
vU —U =-0, 5
+£aH o 5)

U(H)=exp(~AHNU 30 ~U i )+ U iy - (6)

In order to apply these equations, it is necessary



to determine the state transition matrix A from
the given images. In the present example, we
have determined each of the durations, ie.,
corresponding to the field H changes from 0 to
20, 20 to 40 and 40 to 140 A/m, of the matrices
using the three images, by following modified
equation:

55§
A, =_J_.1 ,U;*_l__r.* , i=123. €))
AH Uu-u,,

The images U, and U,, in Eq.(7) correspond
to the initial and final image, respectively, and
U,., corresponds to the image between U, and

U,.,. For example, when calculating the matrix
in duration from H=0 to H=20 A/m, U,, U,
and U,, become the images corresponding to

H=0, 20 and 40 A/m, respectively. We have also a
magnetic domain image at B=1.9 and H=240 (not
shown) so it is possible to calculate the value
of A;.

Figs 2(a)-(c) show the real and imaginary parts of
state transition matrices at the durations 1, 2 and
3. The matrix shown in Fig.2(a) has the distinct
values along the domain walls. These are the
irreversible boundary displacements. Thus, we
have a result exactly corresponding to the
classical domain theory.

The majority of elements in matrix shown in
Fig.2(b) are distributed at random along the
magnetic walls. However, some parts are equal to
zero. Both the movement of domain walls and
rotation of magnetization within the domains
cause this magnetization process. This process
happens when the mode of magnetization
changes and may be both imreversible and
reversible and characterized by both zero and
small characteristic values comparing with the
duration 0< H <20 A/m shown in Fig.2(a).

Finally, in Fig.2(c), all elements in the matrix A,

are governed with one constant value without
imaginary part. According to the conventional
domain theory, this process is reversible because
the majority of magnetization states represent the
same direction. Also, it is visible that this is a
non-linear system because the state transition
matrices are different at each of the durations.

i

(a) H=0 A/m, B=0 T
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(b) H=20 A/m, B=1.5 T
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(c) H=40 A/m, B=1.7T (d)H=140 A/m,B=1.8T

Figure 1. Magnetic domain images by SEM
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Figure 2 State transition matrices of
the image Helmholtz equation.
The left and right columns are the real and
imaginary parts of matrices, respectively.
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Let us consider the physical meaning of state
transition matrices shown in Fig.2, For a
ferromagnetic material, the relationship between
the magnetic field and flux density can be
represented by:

.I_B_f.__l_..__a_B___:H -H (8)

#. q) a(H‘u = Hc) ext Z

where H, and H, represent the external field
and coercive fields, respectively. Moreover, ¢
denotes the Preisach density function [1-3]. It’s
reciprocal 1s represented by the state transition
matrices shown in Fig.2; compare Egs.(5) and

(8).
3.3 Magnetization curve reconstruction

From the results of Fig.2, we are able to observe
the magnetization process as an animation. Fig.3
shows each frame of the animation generated by
means of Eq.(6) (right column) together with the
magnetization curves (left column). It is obvious
that we have succeeded in estimating the
magretization process from only four images.

4 CONCLUSIONS

We have proposed a method of image processing
based on classical physics, and also a new
approach using visualized image. In this paper,
we have applied our methodology to evaluate the
property of a grain-oriented silicon steel sheet.
Observation of the state transition matrices
confirms the conventional magnetic domain
theory. We anticipate that our methodology can
become an intellectual tool for discovering the
rules of systems.
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Figure 3 Magnetization process estimation
by means of image Helmholtz equations.
Left column: magnetization curves.
Right column: generated images.



