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Abstract. We have proposed a new dose optimization method for proton and heavy ion therapy
using generalized sampled pattern matching, where an optimal beam weight distribution for
scanning is obtained as a solution. Using water phantom models, one-dimensional lateral
and depth dose distributions were separately optimized, each resulting in a uniform dose
distribution within a target region and minimum dose fall-off to minimize undesired irradiation
onto neighbouring tissues. Subsequently, we have applied the technique to broad beam three-
dimensional proton therapy, leading to a homogeneous dose distribution inside a target and
minimized distal and lateral dose fall-off for most convex tumour shapes.

1. Introduction

Optimization of proton or heavy ion therapy ideally requires a uniform dose distribution
within a target volume, a zero dose level in critical organs, and a minimum dose level in
other normal tissues.

Several optimization techniques have been reported using a least-squares method
(Pedroni 1995) or an iterative deconvolution scheme (Lind 1988, Brahme er al 1989)
to obtain beam weight solutions for a given dose distribution. The unconstrained least-
squares method may lead to unphysical negative beam weight solutions. The solution also
depends on initial values, and it is not always easy to guess good initial values. This
initial value problem may be overcome by employing random methods such as simulated
annealing; however, this better strategy still has the negative solution problem. Meanwhile,
the iterative deconvolution method is not directly applicable for inhomogeneous media,
because the formulation is based on convolution of a spatially invariant energy deposition
kernel,

We have proposed a new dose optimization method for proton and heavy ion therapy
using generalized sampled pattern matching (Saito and Yoda 1996), where the resulting beam
weights are always non-negative as for the previous iterative deconvolution scheme, and
moreover a heterogeneous medium may be considered once we calculate spatially varying
energy deposition kernels using Monte Carlo methods (Goitein and Sisterson 1978) or other
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approximated formulations such as semi-infinite slab models (Larsson 1987, Russell er al
1995). In this report, we show preliminary dose optimization resuits for homogeneous water
phantom models.

2. Principle of generalized sampled pattern matching

Generalized sampled pattern matching (GSPM) is a generalization of an inverse problem
solver, sampled pattern matching (Saito et al 1990, Saotome et al 1993, 1995, Yoda er al
1997). The original sampled pattern matching (SPM) provides only a one-bit O orl)
solution while the GSPM gives a multiple-bit solution. Here, we describe the GSPM

principle using the terminology of three-dimensional proton dose optimization.
The basic equation we want to solve is given as follows:

D(r) =Y  NiHi(r) ()

where 7 is a three-dimensional spatial position (x, y, 2), D(r) is the desired dose distribution
inside the medium, H;(r) is a dose distribution given by a monoenergetic Gaussian beam
often called an energy deposition kernel and N; is a beam weight or the number of incident
particles. In GSPM, the beam weight solution N;s are approximated by quantized discrete
values, and therefore the solution process is based on a discrete search algorithm. The
GSPM involves two important aspects: unique objective function and a unique solving

procedure.

The objective function for the GSPM algorithm is cosine of the vector angle between
a desired dose distribution vector U = (u, Uz, ..., 4m) and a theoretically calculated dose
distribution vector V' = (v1, V2, ..., v,) where m denotes the number of dose sampling
points. In other words, each u; (i = 1,..., m) corresponds to a desired dose D(r;)
in equation (1) that is predetermined, whereas each v; (i = 1,..., m) corresponds to a

theoretically calculated dose given by the right-hand side of equation (1). The cosine of the
angle 6 of the above two vectors U and V is given by the inner product of the corresponding
normalized vectors as follows:

coso = LY 2)
s = ———
UiV
cos6 is called the pattern matching index. If the two vectors U and V' lie in a same |
direction, then the value of cos@ is 1.0, giving the best pattern matching regardless of the d

vector amplitudes |U| and |V, Conventional optimization methods always try to minimize
the squared sum of the difference between the desired values and the calculated results;
consequently, we have to consider absolute dose levels from the beginning possibly leading
to undesirable local minimum solutions. In contrast, the GSPM finds a normalized beam
weight distribution as a solution thereby highly reducing such local minimum problems.
The absolute beam weight or irradiation dose can easily be obtained by dividing the desired
absolute dose by the calculated relative dose after the optimization.

The optimization procedure resembles piling building blocks on the floor one-by-one.
In this case, we add the individual beams, H;(r) (defined in equation (1)), together in an
incremental fashion. Each beam is added with an incremental or unit beam weight (of say
0.1), and the same beam may be added with this incremental weight several times in the
procedure if necessary. The first step is to choose one beam from the set of beams {H;(7)}
that maximizes cosf. For example, consider a one-dimensional problem of finding the
weighting factors in the superposition of monoenergetic Bragg peaks to obtain a spread-out
Bragg peak (i.e. the one-dimensional version of equation (1)). The beamn that maximizes
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cos @ is the most energetic beam (i.e. the beam with the longest range) because for all other
beams there will be some terms in the sum U -V = ) u;v; which are zero. The beam
with the longest range is the ‘most important’ beam in the superposition, and it is the one
that is recognized first by the pattern matching index. The optimization process continues
by adding in beams incrementally such that the pattern matching index, cos 8, is maximized
for each addition step. This is repeatedly performed until all possible beams are included.
Finally, we obtain an optimal weight distribution by finding the highest pattern matching
index for all the combinations of beams considered.

Figure 1 shows the process of finding the solution. For simplicity a one-dimensional
example is shown. The GSPM yields a solution after placing all the possible beam weights
as shown in figure 1. The optimal weight distribution is obtained by selecting the distribution
with the highest value of cos8. This is represented by one of the intermediate diagrams
in figure 1. In this figure the incremental or unit beam weight is chosen to be 0.1 and the
maximum weight is set at 1.0 thereby providing a 10-step dynamic range for the optimal
weight solution. For more precision, we simply choose a smaller unit weight such as 0.0l
while maintaining the maximum weight unchanged. All the calculations were initally done
by Mathematica (Wolfram 1991). Subsequently, the GSPM routine was coded by C and
called from inside Mathematica.
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Figure 1. Diagram of solution search processes of generalized sampled pattern matching
(GSPM). The solution is given as the beam weight distribution having the highest pattern
matching index, cosé.
3. Results

3.1. One-dimensional lateral dose optimization

The lateral dose distribution D(x, zp) at depth zg is given as follows:

e 2,2
D(r, zo) = 3 W R T IO g o) 3)

mo?
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Figure 2. Results of one-dimensional lateral dose optimization: {(a) the desired beam profile
(dots) as compared with the profile obtained by the GSPM procedure (full curve); (b) the beam
weight pattern required to generate the GSPM dose distribution shown in {(a), (¢) the beam
profile generated by a uniform beam (thin curve) compared with the profile generated by the
GSPM procedure (thick curve).

where x denotes the lateral coordinate, N; is a beam weight, Ax is a step size for scanning,
o is a 1/e beam radius at the depth zo, and S(E, 20) is a stopping power at the depth 2o
generated by a broad parallel beam having an initial energy of E.

Figure 2(a) shows a desired lateral dose distribution (dots) and the optimized dose
distribution (full curve) calculated by the GSPM algorithm, where the desired lateral dose
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Figure 3. Results of one-dimensional depth dose optimization. (a) The desired beam profile
(dots) as compared with the profile obtained by the GSPM procedure (full curve). The number
of dose sampling points in the uniform region was 40, and thus it looks like a thick line. (b) An
optimal beam weight solution as a function of energy degrader thickness, where monoenergetic
proton beams of 50 different energies with a constant range decrement of 1 mm irradiate a water
sample.
~. )

fall-off was given by the Gaussian distribution characteristic for a single pencil beam. Figure
2(b) depicts the optimal solution (dots) of lateral beam weights. The full curve was drawn
only for easier observation. In figure 2(c), the optimized dose distribution (thick curve) is
compared with the dose resulting from a uniform beam (thin curve). These results indicate
that the optimization minimizes the lateral dose fall-off to the physical limit while providing
a homogeneous dose inside the target.

3.2. One-dimensional depth dose optimization

The depth dose distribution on a central axis D(0, z) generated by a broad parallel beam is
given as follows:

D(©,2) =Y NS(E;,2) “)
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Figure 4. Diagram of the broad beam three-dimensional proton therapy system.

where z denotes the depth coordinate, N; is a beam weight of an initial energy E;, and
S(E;, 7) is stopping power at the depth 2 generated by the beam having the initial energy
of E;. In this paper, the relative stopping power has been taken from measurements made
on the 187 MeV broad proton beam from the Gustav Werner synchrocyclotron in Sweden
(Larsson 1961).

Figure 3(a) shows a desired depth dose distribution (dots) and the optimized dose
distribution (full curve) using the GSPM procedure, where the desired distal dose fall-off
was given by the fall-off of a monoenergetic beam having the same range. Monoenergetic
proton beams of 50 different energies with a constant range decrement of 1 mm irradiate
a water sample. The number of dose sampling points in the uniform region was 40, and
thus it looks like a thick full line. Figure 3(b) depicts an optimal beam weight distribution
as a function of water equivalent thickness of an energy degrader. The results indicate
that the optimization minimizes the distal dose fall-off to the physical limit while giving a
homogeneous dose distribution inside the target. The overshoot at the distal corner results
from the ideal fall-off characteristic provided as a part of the desired distribution.

As shown in Figure 3(a), we placed only three dose sampling points at the plateau region
for the desired dose distribution because we do not know the exact dose level in this region
beforehand. The GSPM pattern matching procedure utilizes the vector inner product given
by equation (2), and therefore the assigned sampling point density automatically corresponds
to the weighting coefficient of the pattern matching calculation.

3.3. Application 1o broad beam three-dimensional proton therapy

Figure 4 shows a diagram of a broad beam three-dimensional proton therapy system (Kanai
et al 1983a). The broad beam that runs in parailel irradiates a target inside a body through
a variable energy degrader, a multileaf collimator, a fixed bolus and a dose monitor. A
computer receives dose signals from the dose monitor; subsequently, the computer transmits
control signals to the energy degrader and the multileaf collimator during irradiation.

In this system, the treatment volume is layered according to the shape of the distal
surface of the target, and the dose is built up using the energy degrader, the multileaf
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Figure 5. Results of depth dose optimization for the broad beam three-dimensional therapy
system. The optimization was performed along the depth-directed line including the deepest
point of the target. (a) The desired depth dose distribution (dots) is compared with the optimized
dose distribution (full curve). The number of dose sampling points in the uniform region was

18, and thus it looks like a thick line. (b) An optimal beam weight is shown as a function of

energy degrader thickness, where monoenergetic proton beams of 25 different energies with a
constant range decrement of 2 mm irradiate a water sample. (¢) The optimized dose distribution
(full curve) is compared with a monoenergetic Bragg curve (dots).
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Relative dose level

Figure 6. Three-dimensional plots (a)-(d) of the dose distribution during optimized irradiation.

collimator and the bolus. When the range is shortened by increasing the degrader thickness,
the irradiated field aperture is changed using the multileaf collimator to maintain conformal
irradiation.

The absorbed dose contribution to a point at depth 2 and distance x from a central
axis of a Gaussian proton beam having an energy E and a beam weight N(E) is given as
follows:

exp(—x2/0 (2)°]

e S(E, 2)
where o (z) is a 1/e beam radius at the depth z and S(E,2) is a stopping power. In this
calculation, the initial 1/e radius of the incident Gaussian beam is set at 3 mm, and the
beam radius in water has been taken from measurements made on the 177 MeV proton
beam from the PSI cyclotron in Switzerland (Scheib er al 1994). Further, it is known that
a broad collimated beam can be generated by a summation over a finite number of narrow
Gaussian beams (Brahme et al 1981), and this idea was used for the present calculation.
The edge scattering at the collimator wall were ignored for simplicity.

Figure 5(a) shows a one-dimensional desired depth dose distribution (dots) and the
optimized dose distribution (full curve) using the GSPM procedure, where the optimization
was performed along the depth-directed line including the deepest point of the target. The
number of dose sampling points in the uniform region was 18, and thus it looks like a thick
line. Again the desired distal dose fall-off was given by the fall-off of a monoenergetic
beam having the same range. Figure 5(b) depicts an optimal beam weight solution as a
function of energy degrader thickness. Monoenergetic proton beams of 25 different energies
with constant range decrements of 2 mm irradiate the medium. Figure 5(c) shows the

D(x,z) = N(E)

(5)
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Figure 7. Isocontour plot of the optimized dose distribution. 4

optimized dose distribution (full curve) and a monoenergetic Bragg curve (dots), indicating
that the optimization minimizes the distal dose fall-off while providing a homogeneous dose
distribution inside the target.

Figures 6(a)-(d) show three-dimensional plots of the dose distribution during the
optimized irradiation, while figure 7 gives an isocontour plot of the final dose distribution.
Although we have optimized the dose distribution only in a depth direction, the lateral dose
fall-off was also practically optimized due to the target shape characteristic. We suggest
that for most convex cancer targets the proposed optimization works well for broad beam

l three-dimensional proton therapy with an advantage of minimized distal and lateral fall-off.
The one-dimensional GSPM calculation time using a Power Macintosh 8100/100 MHz was
of the order of 10 s depending on the number of beams considered.

4. Discussion

In this report we show preliminary results using homogeneous water phantom models.
However, once we calculate spatially varying energy deposition kernels using Monte Carlo
methods or other analytical approximations such as semi-infinite slab models, it is possible
to perform dose optimization in a heterogeneous body using the GSPM method. We have
demonstrated one-dimensional examples followed by an application to the broad beam
therapy system; however, the approach can be directly applied to a general three-dimensional
spot scanning method (Kanai er al 1980, 1983b). The dose optimization for the three-
dimensional spot scanning in heterogeneous media will be reported elsewhere. The GSPM
procedure can also be applied to dose optimization of other radiotherapy means including
photon, electron and heavier charged ions by considering RBE.
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